翻訳と辞書
Words near each other
・ Ortega hypothesis
・ Ortega y Gasset Awards
・ Ortega, California
・ Ortega, Tolima
・ Ortegal
・ Ortegocactus
・ Orteguaza River
・ Orteh Cheshmeh
・ Orteig Prize
・ Ortek Therapeutics
・ Ortel Królewski Drugi
・ Ortel Królewski Pierwszy
・ Ortel Książęcy Drugi
・ Ortel Książęcy Pierwszy
・ Ortelec River
Ortelius oval projection
・ Ortelle
・ Ortelli
・ Ortenau
・ Ortenau S-Bahn
・ Ortenaukreis
・ Ortenberg
・ Ortenberg (mountain)
・ Ortenberg, Baden-Württemberg
・ Ortenberg, Hesse
・ Ortenburg
・ Ortenburg (Bavaria)
・ Ortenburger Heritage Conflict
・ Ortensia
・ Ortensia (horse)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ortelius oval projection : ウィキペディア英語版
Ortelius oval projection

The Ortelius oval projection is a map projection used for world maps largely in the late 16th and early 17th century. It is neither conformal nor equal-area but instead offers a compromise presentation. It is similar in structure to a pseudocylindrical projection but does not qualify as one because the meridians are not equally spaced along the parallels. The projection's first known use was by Battista Agnese (flourished 1535–1564) around 1540, although whether the construction method was truly identical to Ortelius's or not is unclear because of crude drafting and printing. The front hemisphere is identical to Petrus Apianus's 1524 globular projection.〔
The projection reached a wide audience via the surpassingly popular Typus Orbis Terrarum of Abraham Ortelius beginning in 1570. The projection (and indeed Ortelius's maps) were widely copied by other mapmakers such as Giovanni Pietro Maffei, Fernando de Solis, and Matteo_Ricci.
==Formulas==
Given a radius of sphere ''R'', central meridian ''λ''₀ and a point with geographical latitude ''φ'' and longitude ''λ'', plane coordinates ''x'' and ''y'' can be computed using the following formulas when ''λ'' ≤ π/2:〔
: y = R \varphi
: x = \pm R \left(|\lambda-\lambda_0| - F + \sqrt}\right), where
: F = \frac \left(\frac + |\lambda - \lambda_0|\right)
For the outer hemisphere use the same formula for ''y'', but:
: x = \pm R \left(\sqrt-\varphi^2} + |\lambda - \lambda_0| -\frac\right)
In these formulas, ''x'' should take the sign of ''λ''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ortelius oval projection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.